INTRODUCTION

Abstract

3121

- HER3 (ERBB3) is expressed on the cell surface of breast cancer, EGFR-mutated non-small cell lung cancer and other solid tumors
- HER3 is a promising antibody-drug conjugate (ADC) target
- Patritumab deruxtecan¹ is currently in clinical evaluation for breast cancer and EGFR-mutated NSCLC with encouraging clinical data in phase I/II clinical trials²
- We sought to identify a differentiated HER3 ADC with the potential for improved anti-tumor activity in HER3-expressing solid tumors
- As a proof-of-concept, seribantumab³, a fully human IgG2 anti-HER3 mAb, was conjugated with a cleavable valine-citrulline linker and MMAE payload via the stochastic cysteine conjugation method to yield an average DAR of 4

METHODS

HER3-ADC1 was evaluated in vitro and in vivo, with patritumab-DXd as a comparator. Binding to BT474 breast carcinoma cells (HER3 high; immunohistochemical (IHC) staining intensity 3+) was measured by flow cytometry. In vitro cytotoxicity was evaluated for HER3-ADC1, isotype-MMAE and free MMAE payload as well as patritumab deruxtecan, isotype-DXd and free deruxtecan payload in BT474, SK-BR-3 breast adenocarcinoma (HER3 high; IHC 3+), and NCI-H446 lung carcinoma (HER3 low; IHC 0 - 1+) cells. In vivo anti-tumor activity was assessed for HER3-ADC1, isotype-MMAE, patritumab-DXd and isotype-DXd in patient-derived xenograft (PDX) models of pancreatic (CTG-0307, HER3 high; IHC 3+) and breast cancer (ST941, HER3 low; IHC 0 - 1 +).

CONCLUSIONS

- HER3-ADC1 demonstrated target-dependent in vitro cytotoxicity
- HER3-ADC1 exhibited superior anti-tumor activity compared to patritumab-DXd and induced tumor regressions in a HER3expressing pancreatic cancer PDX model
- Results from in vitro and in vivo studies highlight the promising therapeutic potential of a seribantumab-based ADC for patients with HER3-expressing cancers
- Studies on the optimization and characterization of a HER3 ADC drug candidate are ongoing

REFERENCES

- 1. Hashimoto Y, et al. Clin Cancer Res (2019) 25 (23): 7151–7161. 2. Daiichi-Sankyo. 22 Dec 2023. [Press Release]
- https://www.daiichisankyo.com/files/news/pressrelease/pdf/202312/20231222_E.pdf 3. Curley MD, et al. Mol Cancer Ther (2015) 14 (11): 2642–2652.

Abbreviations: ADC, antibody-drug conjugate; DAR, drug-antibody ratio; DXd, deruxtecan; EC₅₀, half-maximal effective concentration; IC₅₀, half-maximal inhibitory concentration; IgG1, immunoglobulin G1; IgG2, immunoglobulin G2; IHC, immunohistochemistry; mAb, monoclonal antibody; MMAE, monomethyl auristatin E; nd, not determined; qw, once-weekly

Therapeutic potential of a HER3 antibody-drug conjugate for the treatment of HER3-expressing cancers

Thomas O'Hare, Jaclyn Cleveland, Valerie Malyvanh Jansen, David Dornan

Elevation Oncology, Inc., Boston, MA

C				
EC ₅₀ (nM), BT474 cell line				
Seribantumab	13.9			
HER3-ADC1	9.7			
Patritumab	1.5			
Patritumab-DXd	1.9			
HER3-ADC1 EC ₅₀ /Seribantumab EC ₅₀ :	0.70			
Patritumab-DXd EC ₅₀ /Patritumab EC ₅₀ :	1.27			

Β			
	IC ₅₀ (nM)		
	SK-BR-3	BT474	NCI-H446
HER3-ADC1	0.09	0.28	9.48
isotype-MMAE	12.78	16.20	8.08
patritumab-DXd	62.55	>1000	34.61
isotype-DXd	60.62	>1000	30.61
MMAE	0.05	0.11	0.05
DXd	0.60	18.60	0.09

isotype-MMAE IC ₅₀ /HER3-ADC1 IC ₅₀				
SK-BR-3	BT474	NCI-H446		
142.00	57.86	0.85		

12
22
10
1
*
82
2
22
10
200

% Tumor Growth Inhibition (TGI) vs. Vehicle				
	CTG-0307 ^a	ST941 ^b		
HER3-ADC1 (10 mg/kg)	121.68%	-8.14%		
HER3-ADC1 (3 mg/kg)	70.73%	nd		
isotype-MMAE (10 mg/kg)	53.38%	-15.93%		
patritumab-DXd (10 mg/kg)	71.82%	86.14%		
isotype-DXd (10 mg/kg)	37.12%	48.25%		

^aDay 24; ^DDay 21; nd, not determined

For a copy of this presentation, please scan this quick response (QR) code or visit: www.elevationoncology.com Copies of this poster may not be reproduced or used without permission from AACR & presenters.

