

OCTOBER 16-17, 2020 | WORLDWIDE VIRTUAL EVENT

CRESTONE – Clinical Study of REsponse to Seribantumab in TumOrs with NEuregulin-1 (NRG1) Fusions – A Phase 2 Study of the anti-HER3 mAb for Advanced or Metastatic Solid Tumors (NCT04383210)

David Spigel, MD¹, Saiama N. Waqar, MBBS, MSCl², Mark E. Burkard, MD, PhD³, Jessica J. Lin, MD⁴, Young Kwang Chae, MD, MPH, MBA⁵, Mark A. Socinski, MD⁶, Shirish Gadgeel, MD⁷, Karen L. Reckamp, MD, MS⁸, Shawn M. Leland, PharmD, RPh⁹, Doug Plessinger, RPh⁹, Lori Kunkel, MD¹⁰, Jessica Bauman, MD¹¹, Gregory Otterson, MD¹², Balazs Halmos, MD, MS¹³, Sai-Hong Ignatius Ou, MD, PhD¹⁴, Tejas Patil, MD¹⁵, Yasir Y. Elamin, MD¹⁶, Edward S. Kim, MD¹⁷

Sarah Cannon Research Institute¹, Division of Oncology, Washington University School of Medicine², University of Wisconsin Carbone Cancer Center³, Massachusetts General Hospital⁴, Northwestern University⁵, AdventHealth Cancer Institute⁶, Henry Ford Cancer Institute/Henry Ford Health System⁷, Cedars-Sinai Cancer⁸, Elevation Oncology, Inc.⁹, LAK505¹⁰, Fox Chase Cancer Center¹¹, James Comprehensive Cancer Center¹², Montefiore Medical Center¹³, University of California-Irvine¹⁴, University of Colorado Cancer Center¹⁵, MD Anderson Cancer Center¹⁶, Levine Cancer Institute, Atrium Health¹⁷

OCTOBER 16-17, 2020 | WORLDWIDE VIRTUAL EVENT

#NACLC20

Background: NRG1 Fusions

- NRG1 (Neuregulin-1) gene fusions are rare oncogenic drivers found in 0.2% of solid tumors, including lung, pancreatic, gallbladder, breast, ovarian, colorectal, neuroendocrine, and sarcomas.^{1,2}
- NRG1 is the predominant ligand of HER3 and to a lesser extent HER4.
- NRG1 fusion proteins retaining an active EGF-like domain drive tumorigenesis and proliferation through aberrant HER3 activation (Fig 1).

TUMOR CELL

Figure 1. NRG1 fusion activation of HER3 and downstream pathways

OCTOBER 16-17, 2020 | WORLDWIDE VIRTUAL EVENT

#NACLC20

Background: Unmet Need for NRG1 Fusions

New targeted therapies are needed for the treatment of solid tumors with an NRG1 fusion:

OS & DFS

Patients with NRG1 fusions **do not normally respond well to treatment** with standard chemotherapy, chemoimmunotherapy or novel checkpoint inhibitors such as anti-PD-1/anti-PD-L1 therapies.³ Presence of an NRG1 fusion has been correlated with worse overall and disease-free survival when treated with current therapies.⁴ Exclusive with known drivers

Importantly, NRG1 fusions are often mutually exclusive with other known driver alterations.^{2,5,6}

Abstract #46 | Spigel, SCRI, USA

OCTOBER 16-17, 2020 | WORLDWIDE VIRTUAL EVENT

#NACLC20

Background: NRG1 Fusions in Lung Cancer

- NRG1 fusions estimated in <u>0.8%</u> of lung cancers overall.⁷
- NRG 1 fusions are enriched in the invasive mucinous adenocarcinoma (IMA) subtype, where incidence may be as high as <u>27-31%</u>.⁶
- Durable responses (6 to 27+ mths) can be achieved through treatment with anti-HER3 antibodies or pan-ERBB TKIs (Table 1).

Table 1. Clinical case reports of responses in NRG1 fusion positive lung tumors

Tumor Type	NRG1 Fusion	Response (DoR, mths)	Ref	
GSK2849330 (anti-HER3)				
IMA (Lung)	CD74 – NRG1	PR (19)	[6]	
MCLA-128 (anti-HER2/3 bispecific)				
Lung, unspecified	CD74 – NRG1	PR (4+, ongoing)	[8]	
Afatinib (Pan-HER TKI)				
Lung adenocarcinoma	SDC4 – NRG1	PR (12)	[9]	
Lung adenocarcinoma	SLC3A2 – NRG1	PR (12)	[40]	
Lung adenocarcinoma	CD74 – NRG1	PR (10)	[IU]	
IMA (Lung)	CD74 – NRG1	PR (6)	[11]	
Lung adenocarcinoma	Unspecified	PR (24)		
Lung adenocarcinoma	CD74 – NRG1	PR (27+, ongoing)	[4:0]	
IMA (Lung)	CD74 – NRG1	PR (>18)	[12]	
IMA (Lung)	SDC4 – NRG1	PR (5, then 6)		

OCTOBER 16-17, 2020 | WORLDWIDE VIRTUAL EVENT

#NACLC20

Background: Seribantumab

- Seribantumab is a fully human IgG2 mAb inhibiting HER3 and downstream pathways through:
 - Inhibition of NRG1-dependent activation of HER3,
 - Inhibition of HER3-HER2 dimerization, and
 - Blocking signaling through the PI3K/AKT and MAPK pathways.
- The safety profile of seribantumab is well characterized through prior monotherapy (N=43) and combination studies in over 800 patients.

Figure 2. Seribantumab inhibition of HER3 and downstream pathways

OCTOBER 16-17, 2020 | WORLDWIDE VIRTUAL EVENT

#NACLC20

Methods: CRESTONE Trial

- Open label, multicenter Phase 2 basket trial of seribantumab in adult patients with NRG1 fusion-positive locally advanced or metastatic solid tumors who have progressed on or are nonresponsive to available therapies.
- Enrolling N=75 patients across three cohorts:
 - Cohort 1 (N=55): Patients who <u>have not received prior treatment</u> with any ERBB targeted therapy.
 - Cohort 2 (up to N=10): Patients who have progressed after prior treatment, including prior ERBB targeted therapy.
 - Cohort 3 (up to N=10): Patients harboring NRG1 fusions <u>without</u> an EGF-like binding domain.
- Novel dosing regimen designed to rapidly achieve steady state levels, optimize exposure, and deliver maximal NRG1 inhibition.

Phase 2 Tumor-Agnostic Trial Age ≥18 years old | Advanced solid tumors NRG1 fusion positive by local CLIA or similarly accredited lab

PIVOTAL EXPLORATORY EXPLORATORY Cohort 1 Cohort 2 Cohort 3 $N = 55^{*}$ N = 10N = 10No prior treatment Relapsed/Refractory NRG1 fusions without with Pan-ERBB, HER2, following treatment with EGF-like domain HER3 targeted therapy Pan-ERBB, HER2, or OR HER3 targeted therapy Insufficient tissue for *Interim analysis at central confirmatory N = 20 with centrally testing confirmed NRG1 fusion

Investigational Therapy: Seribantumab (IV)				
Induction (weekly)	Consolidation (biweekly)	Maintenance (Q3W)		
Weeks 1-4: 3g weekly	6 cycles, 3g Q2W	3g Q3W until PD or toxicity		

OCTOBER 16-17, 2020 | WORLDWIDE VIRTUAL EVENT

#NACLC20

Methods: Key Eligibility Criteria

Key Inclusion Criteria

- Locally-advanced or metastatic solid tumor with an NRG1 gene fusion
- ✓ Fresh or archived FFPE tumor sample
- ✓ Minimum of one prior standard therapy
- ✓ \geq 18 years of age
- ✓ ECOG performance status: 0, 1, or 2
- ✓ At least one measurable extra-cranial lesion (RECIST)

Key Exclusion Criteria

Known, actionable oncogenic driver mutation other than
NRG1 fusion where available standard therapy is indicated

NRG1 fusion status for enrollment will be determined through a local CLIA or similarly accredited molecular assay.

NRG1 fusion status for patients in Cohort 1 will be centrally confirmed using an RNA-based NGS assay.

OCTOBER 16-17, 2020 | WORLDWIDE VIRTUAL EVENT

#NACLC20

Methods: Objectives

Primary endpoint

Objective response rate (ORR) per RECIST v1.1 by independent/central radiologic review.

Secondary endpoints

- Duration of response (DoR)
- Safety
- Progression free survival (PFS)
- Overall survival (OS)
- Clinical Benefit Rate (CR, PD, SD > 24 weeks)

Exploratory endpoints

- Clinical relevance of fusion partners
- Impact of prior therapies, including ERBB targeted therapies
- Resistance mechanisms

OCTOBER 16-17, 2020 | WORLDWIDE VIRTUAL EVENT

#NACLC20

Methods: Study Status

CRESTONE is open and enrolling with 25-30 planned sites in the US.

Patient identification and enrollment is enhanced through partnerships enabling targeted patient identification and "Just in Time" site initiation.

Open sites as of September 7, 2020				
Site		Investigator		
SARAH CANNON	Sarah Cannon	David Spigel, MD		
A MUTIONAL CAMOER MUSTICITE COMPREHENSIVE CAMOER CENTER	Washington University at St. Louis (Siteman Cancer Center)	Saiama N. Waqar, MD		
HEALTH SYSTEM HEALTH SYSTEM HENRY FORD CANCER INSTITUTE	Henry Ford Health System	Shirish Gadgeel, MD		
Carbone Cancer Center UNIVERSITY OF WISCONSIN SCHOOL OF MEDICINE AND PUBLIC HEALTH	University of Wisconsin (Carbone Cancer Center)	Mark E. Burkard, MD, PhD		
Partnerships as of September 7, 2020				
ATGen* Clinical Laboratory	CARIS FE SCIENCES STRATA "T'E	MPUS A US Oncology Research		

- NRG1 fusions are an actionable driver alteration across solid tumors.
- Inhibition of HER3 and its dimerization partners represents a rational and novel therapeutic approach for tumors harboring an NRG1 fusion, supported by case studies of clinical responses to therapies targeting ERBB family members.^{4,5,7,8}
- CRESTONE is a Phase 2 tumor agnostic study of seribantumab, an anti-HER3 antibody, in patients with solid tumors that harbor an NRG1 fusion.

Learn more about CRESTONE (<u>NCT#04383210</u>) at <u>www.nrg1fusion.com</u>

Contact: clinical@elevationoncology.com or medicalaffairs@elevationoncology.com

REFERENCES

- 1. Jonna et al., Journal of Clinical Oncology. 2020 May 20; 38(15_suppl):3113-3113.
- 2. Jonna et al., Clin Cancer Res. 2019 Aug 15;25(16):4865-4867.
- 3. Duruisseaux M et al., ASCO 2019, Abstract 9081.
- 4. Shin DH et al., Oncotarget. 2016 Oct 25;7(43):69450-69465.
- 5. Fernandez-Cuesta L and Thomas RK., Clin Cancer Res. 2015 May 1; 21(9):1989-94
- 6. Drilon A et al., Cancer Discov. 2018 Jun;8(6):686-695.
- 7. Stalbovskaya V et al., J Clin Oncol 38: 2020 (suppl; abstr e15605).
- 8. Schram AM et al., AACR-NCI-EORTC 2019, Abstract PR02.
- 9. Jones MR et al., Ann Oncol. 2017 Dec 1;28(12):3092-3097.
- 10. Gay ND et al., J Thorac Oncol. 2017 Aug;12(8):e107-e110.
- 11. Cheema PK et al., J Thorac Oncol. 2017 Dec;12(12):e200-e202.
- 12. Cadranel, J et al., Oncologist. 2020 Aug 27. Online ahead of print.

OCTOBER 16-17, 2020 | WORLDWIDE VIRTUAL EVENT

Acknowledgements and Disclosures

Acknowledgements

 The authors would like to thank all patients and supporting staff participating in this study. This study is sponsored by Elevation Oncology, Inc.

Disclosures

- SML and DP are employees of Elevation Oncology.
- LK and SIO serve on the scientific advisory board of Elevation Oncology.